TemplateBasedClassifier
Histogram classifier based on a direct comparison with templates (i.e. reference histograms)
mseTopN_templates
full signature:
def mseTopN_templates( histograms, templates, n=-1 )
comments:
calculate the mse between each histogram in histograms and each histogram in templates
input arguments:
- histograms: 2D numpy array of shape (nhistograms, nbins)
- templates: 2D numpy array of shape (ntemplates,nbins)
- n: integer representing the number of (sorted) bin squared errors to take into account (default: all)
output:
2D numpy array of shape (nhistograms,ntemplates) holding the mseTopN between each
mseTopN_min
full signature:
def mseTopN_min( histograms, templates, n=-1 )
comments:
calculate the mse betwee a histogram and each template and return the minimum
input arguments:
- histograms: 2D numpy array of shape (nhistograms, nbins)
- templates: 2D numpy array of shape (ntemplates,nbins)
- n: integer representing the number of (sorted) bin squared errors to take into account (default: all)
output:
1D numpy array of shape (nhistograms) holding the minimum mseTopN for each histogram
mseTop10_min
full signature:
def mseTop10_min( histograms, templates )
comments:
special case of above with n=10
mseTopN_avg
full signature:
def mseTopN_avg( histograms, templates, n=-1 )
comments:
calculate the mse betwee a histogram and each template and return the average
input arguments:
- histograms: 2D numpy array of shape (nhistograms, nbins)
- templates: 2D numpy array of shape (ntemplates,nbins)
- n: integer representing the number of (sorted) bin squared errors to take into account (default: all)
output:
1D numpy array of shape (nhistograms) holding the average mseTopN for each histogram
mseTop10_avg
full signature:
def mseTop10_avg( histograms, templates )
comments:
special case of above with n=10
[class] TemplateBasedClassifier
comments:
histogram classifier based on a direct comparison with templates (i.e. reference histograms)
⤷ __init__
full signature:
def __init__( self, comparemethod='minmse' )
comments:
initializer
input arguments:
- comparemethod: string representing the method by which to compare a histogram with a set of templates
currently supported methods are:
- minmse: minimum mean square error between histogram and all templates
- avgmse: average mean square error between histogram and all templates
⤷ train
full signature:
def train( self, templates )
comments:
'train' the classifier, i.e. set the templates (reference histograms)
input arguments:
- templates: a 2D numpy array of shape (nhistograms,nbins)
⤷ evaluate
full signature:
def evaluate( self, histograms )
comments:
classification of a collection of histograms based on their deviation from templates
⤷ save
full signature:
def save( self, path )
comments:
save the classifier
⤷ load
full signature:
def load( self, path, **kwargs )
comments:
get a TemplateBasedClassifier instance from a pkl file